Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[chlorido(μ_{3}-1,2,4-triazolato)copper(II)]

Yu-Xiang Gao,* Li-Bin Wang and Yan-Ling Niu
Department of Chemistry, Tonghua Teachers' College, Tonghua 134002, People's Republic of China
Correspondence e-mail: yxgao_tonghua@yahoo.com.cn

Received 24 July 2007; accepted 12 August 2007
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K}$; mean $\sigma(\mathrm{N}-\mathrm{C})=0.003 \AA$; R factor $=0.019 ; w R$ factor $=0.038 ;$ data-to-parameter ratio $=16.9$.

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]_{n}$, has been prepared by hydrothermal reaction of CuCl_{2} and 1,2,4-triazole. It is isostructural with its $\mathrm{Mn}^{\mathrm{II}}, \mathrm{Co}^{\mathrm{II}}, \mathrm{Ni}^{\mathrm{II}}$ and $\mathrm{Zn}^{\mathrm{II}}$ analogs. The $\mathrm{Cu}^{\mathrm{II}}$ atom is surrounded by three N atoms belonging to three different triazolate ligands and a Cl atom, and exhibits a slightly distorted tetrahedral coordination geometry. The triply bridging nature of the 1,2,4-triazolate ligand gives rise to a polymeric layer containing both binuclear and tetranuclear macrocyclic units. In the binuclear unit, two $\mathrm{Cu}^{\text {II }}$ atoms are bridged by two nearly coplanar triazolate groups through the 1,2-positions, affording a six-membered ring around an inversion center. Each binuclear unit is further connected to four parallel units through the other four N atoms of the triazolate groups. Four adjacent units, which are pairwise parallel, afford 16-membered tetranuclear macrocyclic units in which the two nearest-neighbor $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged by a single triazolate ligand through the 1,4 -positions.

Related literature

For the isostructural analogs, see: Gao et al. (2007b) ($\left.\mathrm{Mn}^{\mathrm{II}}\right)$; Wayne et al. (2006) ($\left.\mathrm{Co}^{\mathrm{II}}\right)$; Gao et al. (2007a) ($\mathrm{Ni}^{\mathrm{II}}$); Jonas et al. (1995) ($\left.\mathrm{Zn}^{\mathrm{II}}\right)$.

Experimental

Crystal data
$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]$
$M_{r}=167.06$
Monoclinic, $P 2_{1} / n$
$a=6.0213$ (10) \AA
$b=9.960(2) \AA$
$c=8.6869(10) \AA$
$\beta=101.021$ (10) ${ }^{\circ}$

Data collection

Bruker APEX II CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2001)
$T_{\text {min }}=0.606, T_{\text {max }}=0.654$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019 \quad 65$ parameters
$w R\left(F^{2}\right)=0.038 \quad \mathrm{H}$-atom parameters constrained
$S=1.00$
1096 reflections

$$
\begin{aligned}
& V=511.38(15) \AA^{3} \\
& Z=4 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=4.65 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& 0.12 \times 0.10 \times 0.10 \mathrm{~mm}
\end{aligned}
$$

4256 measured reflections 1096 independent reflections 917 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$
$\Delta \rho_{\text {max }}=0.32 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.32 \mathrm{e}^{-3}$

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINTPlus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the NSFC (grant No. 20501017) and Tonghua Teachers' College.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BI2227).

References

Bruker (2001). SADABS, SAINT-Plus and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2004). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
Gao, Y.-X., Wang, L.-B. \& Hao, X.-R. (2007a). Acta Cryst. E63, m1800.
Gao, Y.-X., Wang, L.-B. \& Hao, X.-R. (2007b). Acta Cryst. E63, m2142.
Jonas, K., Itka, B. W., Claudine, P., Martina, T. \& Olivier, K. (1995). Inorg. Chim. Acta, 230, 159-163.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wayne, O., Jose, R., Kim, R. \& Jon, Z. (2006). Inorg. Chem. 45, 1909-1911.

supplementary materials

Acta Cryst. (2007). E63, m2366 [doi:10.1107/S1600536807040007]

Poly[chlorido($\mu_{\mathbf{3}^{\mathbf{3}}}$ 1,2,4-triazolato) $\mathbf{c o p p e r}(\mathrm{II})$]

Y.-X. Gao, L.-B. Wang and Y.-L. Niu

Comment

The title compound, $\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]_{n}$, is isostructural with its $\mathrm{Mn}^{\text {II }}$ (Gao et al., 2007b), $\mathrm{Co}^{\mathrm{II}}$ (Wayne et al., 2006), $\mathrm{Ni}^{\mathrm{II}}$ (Gao et al., 2007a) and $\mathrm{Zn}^{\mathrm{II}}$ (Jonas et al., 1995) analogues.

The coordination polyhedron of the $\mathrm{Cu}^{\mathrm{II}}$ atom (Fig. 1) can be described as a distorted tetrahedron. The $\mathrm{Cu}^{\mathrm{II}}$ atom is surrounded by three N atoms belonging to three different triazolate ligands, and a Cl atom. The $\mathrm{Cu}-\mathrm{N}$ bond lengths are in the range $1.9585(19)-2.2057(19) \AA$, and the $\mathrm{Cu}-\mathrm{Cl}$ bond length is 2.1955 (8) \AA. The bond angles around the $\mathrm{Cu}^{\text {II }}$ atom are in the range $103.92(8)-113.97$ (6) ${ }^{\circ}$.

Polymeric layers (Fig. 2) are formed due to the triply bridging nature of the 1,2,4-triazolate ligand, which is bonded to three different $\mathrm{Cu}^{\mathrm{II}}$ atoms through its three N atoms. A layer contains both binuclear and tetranuclear macrocyclic units. In the binuclear unit, two $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged by two nearly coplanar triazolate groups through the 1,2-positions, affording a six-membered ring around an inversion center. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separation within the binuclear unit is 3.722 (1) \AA. Each binuclear unit is further connected to four parallel units through the other four N atoms of the triazolate groups. Four adjacent units, which are pairwise parallel, afford 16-membered tetranuclear macrocyclic units. In each of these, the two nearest-neighbor $\mathrm{Cu}^{\mathrm{II}}$ atoms are bridged by a single triazolate ligand through the 1,4-positions. The $\mathrm{Cu} \cdots \mathrm{Cu}$ separations are 5.628 (1) and 6.026 (1) \AA.

Experimental

A mixture of $\mathrm{CuCl}_{2}(0.5 \mathrm{mmol}), \mathrm{KOH}(0.5 \mathrm{mmol}), 1,2,4$-triazole $(0.5 \mathrm{mmol})$ and $\mathrm{H}_{2} \mathrm{O}(8 \mathrm{ml})$ was sealed in a 25 ml Te -flon-lined stainless steel autoclave and kept at 413 K for 2 d . On cooling to room temperature, blue crystals of the title compound were obtained in a yield of 11%. Elemental analysis calculated: C $14.37, \mathrm{H} 1.20, \mathrm{~N} 25.15 \%$; found: C 14.32 , H 1.24, N 25.12\%.

Refinement

H atoms were placed in calculated positions and allowed to ride with $\mathrm{C}-\mathrm{H}=0.93 \% \mathrm{~A}$ and with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound, showing 30% probability displacement ellipsoids for non-H atoms. The subscript I denotes the the symmetry operation $-x+1 / 2, y-$ $1 / 2,-z+3 / 2)$.

Fig. 2. View of a layer showing both the binuclear units and the tetranuclear cavities.

Poly[chlorido(μ_{3}-1,2,4-triazolato)copper(II)]

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{~N}_{3}\right) \mathrm{Cl}\right]$
$M_{r}=167.06$
Monoclinic, $P 2_{1} / n$
Hall symbol: -P 2yn
$a=6.0213$ (10) \AA
$b=9.960(2) \AA$
$c=8.6869(10) \AA$
$\beta=101.021$ (10) ${ }^{\circ}$
$V=511.38(15) \AA^{3}$
$Z=4$
$F_{000}=324$
$D_{\mathrm{x}}=2.170 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 1096 reflections
$\theta=3.1-26.9^{\circ}$
$\mu=4.65 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, blue
$0.12 \times 0.10 \times 0.10 \mathrm{~mm}$

Data collection

Bruker APEX II CCD
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=293(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\text {min }}=0.606, T_{\text {max }}=0.654$

1096 independent reflections
917 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=26.9^{\circ}$
$\theta_{\min }=3.1^{\circ}$
$h=-7 \rightarrow 7$
$k=-12 \rightarrow 12$
4256 measured reflections
$l=-10 \rightarrow 10$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.038$
$S=1.00$
1096 reflections
65 parameters
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained

$$
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+0.65 P\right]
$$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\max }=0.32 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.32$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 1997),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Primary atom site location: structure-invariant direct methods

Extinction coefficient: 0.0269 (11)
Secondary atom site location: difference Fourier map

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\mathrm{eq}}$
C1	$0.2402(4)$	$0.6685(2)$	$1.2710(3)$	$0.0277(5)$
H1	0.2495	0.6537	1.3778	0.033^{*}
C2	$0.2874(4)$	$0.7543(3)$	$1.0620(3)$	$0.0315(6)$
H2	0.3331	0.8100	0.9880	0.038^{*}
C11	$0.30626(12)$	$0.55329(7)$	$0.67333(8)$	$0.04266(19)$
Cu1	$0.04412(4)$	$0.58056(3)$	$0.81490(3)$	$0.01897(11)$
N1	$0.1593(3)$	$0.6475(2)$	$1.0271(2)$	$0.0274(5)$
N2	$0.3427(3)$	$0.77240(19)$	$1.2138(2)$	$0.0259(4)$
N3	$0.1277(3)$	$0.59126(19)$	$1.1642(2)$	$0.0247(4)$

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	$0.0344(13)$	$0.0305(13)$	$0.0168(11)$	$-0.0032(11)$	$0.0013(9)$	$-0.0008(9)$
C2	$0.0417(14)$	$0.0305(13)$	$0.0202(11)$	$-0.0118(11)$	$0.0010(10)$	$0.0022(10)$

supplementary materials

Cl1	$0.0394(4)$	$0.0548(5)$	$0.0376(4)$	$0.0036(3)$	$0.0168(3)$	$-0.0020(3)$
Cu1	$0.02207(16)$	$0.02000(17)$	$0.01356(15)$	$-0.00051(11)$	$0.00020(9)$	$0.00153(10)$
N1	$0.0347(11)$	$0.0280(11)$	$0.0173(9)$	$-0.0051(9)$	$-0.0007(8)$	$0.0027(8)$
N2	$0.0292(10)$	$0.0255(10)$	$0.0213(10)$	$-0.0034(8)$	$0.0002(8)$	$-0.0016(8)$
N3	$0.0295(10)$	$0.0266(10)$	$0.0169(9)$	$-0.0025(9)$	$0.0015(7)$	$0.0029(8)$

Geometric parameters (\AA, ${ }^{\circ}$)

C1-N3	1.293 (3)	Cu1-N1	1.9585 (19)
C1-N2	1.348 (3)	$\mathrm{Cu}-\mathrm{N} 2{ }^{\text {i }}$	1.9950 (19)
C1-H1	0.930	$\mathrm{Cu} 1-\mathrm{N} 3^{\text {ii }}$	2.0257 (19)
C2-N2	1.309 (3)	N1-N3	1.362 (3)
C2-N1	1.315 (3)	N2-Cu1 ${ }^{\text {iii }}$	1.9950 (19)
C2-H2	0.930	N3-Cu1 ${ }^{\text {ii }}$	2.0257 (19)
Cl1-Cu1	2.1955 (8)		
N3-C1-N2	114.0 (2)	$\mathrm{N} 3{ }^{\text {ii }}-\mathrm{Cu} 1-\mathrm{Cl} 1$	112.32 (6)
N3-C1-H1	123.0	C2-N1-N3	107.76 (18)
N2-C1-H1	123.0	C2-N1-Cu1	125.38 (16)
N2-C2-N1	111.6 (2)	N3-N1-Cu1	126.84 (15)
N2-C2-H2	124.2	C2-N2-C1	102.67 (19)
N1-C2-H2	124.2	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{Cu} 1{ }^{\text {iii }}$	124.10 (17)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2^{\text {i }}$	103.92 (8)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{Cu} 1{ }^{\text {iii }}$	133.17 (15)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3{ }^{\text {ii }}$	107.36 (8)	C1-N3-N1	103.95 (18)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 3{ }^{\text {ii }}$	112.44 (8)	$\mathrm{C} 1-\mathrm{N} 3-\mathrm{Cu} 1^{\text {ii }}$	130.17 (16)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{Cl} 1$	113.97 (6)	N1-N3-Cu1 ${ }^{\text {ii }}$	125.79 (14)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{Cl} 1$	106.62 (6)		

Symmetry codes: (i) $x-1 / 2,-y+3 / 2, z-1 / 2$; (ii) $-x,-y+1,-z+2$; (iii) $x+1 / 2,-y+3 / 2, z+1 / 2$.

Fig. 1

supplementary materials

Fig. 2

